Solving Service Discovery by Richard Roger, Nearform

Solving Service Discovery – Richard Roger, Nearform

The microservice architecture is a powerful way to structure large scale Node.js systems. Microservices bring many benefits, enabling rapid development, making continuous delivery easier, and making fine-grained scaling practical. But this architecture is a distributed system, and brings with it all the associated challenges of such systems, not least of which is the need for individual services to find each other. Deciding how to solving the service discovery problem is a key decision point for any architect building microservice systems.

A common approach is to use a service registry. Unfortunately service registries bring their own problems, such as ensuring consistency while scaling, or increasing deployment complexity with the need to run agents. All this could be forgiven, but for a greater sin – registries encourage strong coupling between microservices by providing a concept of serviceidentity. The very purpose of the registry, service discovery, is poisonous to one of the key benefits of microservices – that the system is dynamic and flexible.

There is a better way. Services can find each other dynamically, using gossip protocol algorithms. Highly efficient algorithms such SWIM (Scalable Weakly-consistent Infection-style Process Group Membership Protocol) mean that microservices can do away with service discovery altogether, relying instead on an constantly evolving, dynamic map of their local network. By pushing intelligence to the edges of the network, not only does this approach make failure detection orders of magnitude faster (no more waiting for heartbeats to timeout), but it also makes deployment much easier, as the network configures itself.

This talk will examine the use of the SWIM algorithm to build a Twitter clone in Node.js, one microservice at a time.

About Richard Rodger
Richard Rodger is co-CEO and co-founder of nearForm. He is an expert and thought leader in next-generation cloud and mobile technologies, with a current focus on Node.js and microservices. His book Mobile Application Development in the Cloud (Wiley, 2010) is one of the first major works on the subject.
Richard was previously CTO of FeedHenry, a mobile application platform provider that was acquired by RedHat for €63.5m in 2014.
Since Richard co-founded nearForm in 2011, the company has become the world’s largest Node.js and microservices consulting company.

Richard has long been an active member and influencer of the global open source software (OSS) community, specializing in OSS for enterprise. As CTO of nearForm, he has placed OSS at the heart of how the company works. Most recently, he created Seneca.js, a microservices tool kit for Node.js that is a key component of nearForm’s software development and delivery arsenal.
The Tao of Microservices (Manning), Richard’s new book, will be published in 2016.

Solving Service Discovery by Richard Roger, Nearform

[REF] “The art of service discovery at scale” by Nitesh Kant

Nitesh Kant @NiteshKant / Netflix

Whether it is a simple DNS lookup or a complex dedicated solution, service discovery is the backbone of any microservices architecture and an immature solution can soon turn into an achilles’ heel.

Nitesh Kant in this talk will introduce the concept of service discovery and various use cases it solves in a complex service based architecture. He will then be introducing Netflix’s Eureka (https://github.com/Netflix/eureka); a highly-available, multi-datacenter aware service discovery solution built from scratch, it’s architecture and how it is unique in this space, by favoring Availability over Consistency in the wake of network partitions.

Nitesh Kant is an engineer in Netflix’s Cloud Platform team, working on their Inter Process Communication stack. He is the author of RxNetty (https://github.com/ReactiveX/RxNetty) which forms the core of Netflix’s IPC stack. He is also a contributor to other Open source projects like Eureka

(https://github.com/Netflix/eureka) and Karyon (https://github.com/Netflix/karyon)

[REF] “The art of service discovery at scale” by Nitesh Kant